Solar Water Heating Systems Newark NJ

This page provides relevant content and local businesses that can help with your search for information on Solar Water Heating Systems. You will find informative articles about Solar Water Heating Systems, including "Making Hot Water with the Sun". Below you will also find local businesses that may provide the products or services you are looking for. Please scroll down to find the local resources in Newark, NJ that can help answer your questions about Solar Water Heating Systems.

Sterling Energy Services Inc
(770) 458-7123
12 Perimeter Park Dr
Atlanta, GA
Hoffman Resources Llc
(617) 535-3700
115 Broad St
Boston, MA
Jack Dale Associates Inc
(410) 662-1117
911 W 36th St
Baltimore, MD
Sra Enterprises
(818) 832-3030
10722 Zelzah Ave
Granada Hills, CA
M & M Investments
(940) 549-7650
204 Tennessee St
Graham, TX
Technical Solutions & Services Inc
(309) 266-8774
110 E Queenwood Rd
Morton, IL
Nexant Inc
(608) 246-0535
2702 International Ln
Madison, WI
Navitas Energy
(612) 370-1061
3001 Broadway St NE
Minneapolis, MN
Domus Plus
(708) 386-0161
408 N Grove Ave
Oak Park, IL
Edison Mission Enerey
(309) 346-2165
13082 E Manito Rd
Pekin, IL

Making Hot Water with the Sun

Solar hot-water systems are a natural fit with net zero houses. They're capable of meeting much of the demand for domestic hot water, and in some instances can help with space heating as well. There are a variety of solar water heater on the market, some suited only for warm climates and some designed specifically to cope with subfreezing temperatures. No matter where you live, there's a solar collector out there that will work.

One way to think about the variety of collectors is to divide them into active or passive systems.

Active collectors use electric pumps to move a fluid (either water or anitfreeze) through the collectors and into a storage tank.

Passive systems, are simpler and less expensive, rely on gravity and convection to move water through the collector. There are no electrical components to break, and so these systems tend to be less expensive and more reliable but they're more susceptible to freezing pipes.

Basic Types of Collectors

Flat-plate collectors - are up to 4 ft. wide and 12 ft. long, consist of a shallow, insulated housing that encloses tubes for the water or heat transfer medium and plate that helps absorb solar energy. A sheet of glass covers the top of the collector. Fluid flows through the pipes, picks up heat from the sun, and is moved into a hot-water storage tank or directly into the domestic hot-water supply.

Evacuated tube collectors - These collectors consist of parallel rows of glass vacuum tubes. Inside, a fin absorbs heat from the sun and transfers it to a liquid medium. Evacuated tube collectors are sometimes specified in cold climates because of their high efficiency.

Thermosiphon collectors - Natural convection moves water through the collector without the need for pumps. As warm water rises into a storage tank, cooler water flows in the bottom to replace it. Some versions can be used in frost-prone areas, but these are typically found in climates that don't have freezing temperatures.

Making Passive Solar Work Where It's Cold

Water lines that freeze and burst have been one factor limiting the wider use of passive solar hot-water systems. The U.S. Department of Energy reports that the current practice of using insulated copper limits the use of these systems to the southern tier of the country and makes truly risk-free installation possibly only in Florida and along the southern California coast.

One promising piece of research involves pipes that can freeze and thaw repeatedly without damage.  It also uses freeze-protection valves that protect water lines by circulating a small amount of warm water when the temperature dips toward freezing.

The National Renewable Energy Laboratory conducted tests on several brands of pipe made from cross-linked polyethylene (PEX). Some of them were able to withstand 400 freeze-thaw cycles without breaking; one brand could tolerate only 10 cycles. One problem with PEX is that it has an upper temperature limit of 210°F.

According to th...

Click here to read the rest of this article from